Project Report- Group 4

I. PROBLEM DEFINITION

For a pre-generated world (hospital) without an inital map,
a robot (robot M) is expected to map the hospital and guide a
visitor (robot S) to announced locations. With the constraint
that robot S is only equipped with a RGB camera plus
communication with robot M and does not have SLAM
capabilities, while robot M is solely responsible for mapping
the world and guiding robot S around.

II. TASK I

Our first job was to tackle autonomous mapping us-
ing SLAM on robot M. To accomplish this we used
the ’explore_lite’ package https://github.com/
hrnr/m-explore.git, which was used in tandem with
the inbuilt Gmapping SLAM stack of turtlebot3. The
’explore_lite’ package is a greedy frontier-based ex-
ploration method whose job is solely to explore unseen
frontiers by providing commands to the ‘'move_base’ node,
it does not generate a cost map by itself, which makes
it light weight and easy to setup. For the mapping part
OpenSlam’s Gmapping package is used (part of turtlebot3’s
SLAM package) to create occupancy grid from the robot’s
pose and laser scan data. The two packages work together to
autonomously generate a map, a flowchart for the connection
between packages is shown in fig

For manually mapping, the Gmapping package was used
with the telop launch file to drive the robot around. At the end
of the autonomous mapping, not all parts of the world were
reached so the robot had to be driven manually to complete
the map, the map is shown in fig

The second part of our task consisted of acquiring
’AprilTaqg’ locations around the world, the same pack-
ages as the ones used in the booster 1 assignment
was used. Using a listener node, we were able to grab
the ’AprilTagArrays’ from the ’/tag_detections’
topic. By using an x-axis transformation matrix, the April
Tag coordinates were transformed from the robot’s local
frame (camera) to the world frame.

ieometry_msgs/PolygonStamped
map_msgs/OccupancyGridUpdat g y-msg V9 P

4 move base
P explore lite »

SLAM

nav_msgs/OccupancyGrid

movement commands

Fig. 1.
map.

Flowchart to show how explore lite is used to explore a unknown

ITI. TASKII

The second task required us to create a new topic
’/target’ which holds three spots of interest (SOI). In-
stead of a publisher node, we simply published an ar-
ray (using Intl6MultiArray) using the command line

Fig. 2. Generated final map of the hospital.

’rostopic pub)’. Our subscriber node was embedded
into a larger project. We utilized Fiorella Sibona’s repo
on github https://github.com/FiorellaSibona/
turtlebot3_nav to intake multiple SOIs, split up co-
ordinates and orientations accordingly, and send each set
of SOI arrays as a goal to the robot. We subscribe to the
’/target’ topic and were able to acquire 3 separate SOI
IDs. With a populated yaml file containing coordinates and
orientations attached to SOI ID, we used the ’/target’
topic’s published IDs, grabbed the appropriate data from the
yaml file, and transferred the data into lists. These lists(used
for coordinates/orientations) were also set as global variables
so that the global listener/callback and the object could
access them. The goal sequence code implements a basic
state machine to keep the robot on it’s current goal until
completed. A flowchart to show the packages called on by
the launch file and the interconnection between packages is
shown in fig [3

The flow of command is as follows:

Command line Publisher — ’\target’ — Python Lis-
tener — callback function (to populate global lists) —
instance of MoveBaseSeq() that implements finite state ma-
chine — goal 1 — goal 1 reached — goal 2 — goal 2 reached


https://github.com/hrnr/m-explore.git
https://github.com/hrnr/m-explore.git
https://github.com/FiorellaSibona/turtlebot3_nav
https://github.com/FiorellaSibona/turtlebot3_nav

— goal 3 — goal 3 reached — Robot Stops

From ﬁgEL we can see that the ‘'move_base_seq’ node

mainly includes two parts:

1) Global planner: It plans an overall path by reading the
given set of targets. The global path of the robot is
calculated by the navigation stack. This consists of
Dijkstra’s optimal path algorithm that implements the
minimum cost path on the costmap.

2) Local planner: Having a valid path by avoid-
ing surrounding obstacles, which is designed by
’base_local_planner’ package. It will give de-
sired pose and the command velocities to the robot to
allow it to move around.

IV. TASK III

For this the goal was to guide a visitor robot (robot S) to
a target location. However the limitation imposed was that
robot S does not have access to the any local or global map,
or LiDAR/depth sensors, it is only equipped with a RGB
camera and allowed to communicate with robot M through
a communication channel *\comm’. This task is mainly an
amalgamation of the previous two tasks, with the difference
that robot S must be spawned to the hospital world at a
known location.

Similar to task II, robot M now has 3 SOI, namely:

1) moving in front of robot S so its AprilTag is visible
2) the target location for the visitor, which robot M needs
to guide robot S to.
3) starting location, which robot M must return to
With only the RGB camera equipped robot S can make
use of an AprilTag placed on top of Robot M to estimate
its proximity, thereby allowing it to closely follow robot

Sensor
transforms

-]

Move_base_seq

I Global_cost_map I I global_planner I

amcl

/sensor_msgs
Sensor : 05§

laser scan

Recovery Path:
Behaviors nav_msgs

I Local_cost_map |

local_planner

nav_msgs
/Odometry

cmd_vel

Odometry

Controller

Fig. 3. Flowchart to show the packages used in task II and their
interconnection.

M. Robot S then follows M closely as possibly without
colliding into M, thereby allowing it to avoid obstacles. The
assumption here is that the path generated by robot M’s path
planner is free of any obstacles. Robot M also tells S when to
start following (i.e. when it’s in front of S) and when to stop
(i.e. when they have arrived at the target location) through
the ’\comm’ topic

V. TASK IV

For the creativity task, we decided to work with OpenCV
so that robot S could make use of it’s RGB camera. OpenCV
YOLO model was used along with robot S’s RGB camera
to implement real time object detection. YOLO is a convo-
lution neural network based model that detects and classifies
objects through a pretrained dataset https://github.
com/pjreddie/darknet, when objects are identified a
bounding box is placed around it with a predicted class name.
A screen capture of detected objects are shown in fig f]

Fig. 4. A screen capture of robot S detecting people as well as a handbag
carried by one of them.

Robot S is manually driven around, and we query its
RGB camera topic to detect objects in the hospital world
in real time. The reason we chose this task was to due
to limitation that robot S is imposed with, having object
detection capability could allow for further strategic planning
for dynamic collision avoidance if objects detected are non-
stationary objects such as humans or other vehicles.

VI. CONTRIBUTION

Task I - Pravin generated the launch files to incorpo-
rate explore-lite with the SLAM-gmapping package, Marcos
tuned the gmapping parameters and created tag detection to
store location of april tags and generated the map.

Task II - Mohammedali and Yuewen worked on creating
the /target topic for the robot to listen to, they created the
code that allows the robot to navigate through the 3 SOI after
they have been published to /target.


https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet

Task III - Marcos and Pravin spawned the robots M and
S and wrote the code which allows S to track and follow
robot M. They also created the /comm topic which allows
communication between the robots so S known when to start
and stop moving. The tag detection code from task I and the
code to allow navigation to different SOIs from task II were
incorporated here, therefore Mohammedali and Yuewen both
contributed to successful implementation of part III as well.

Task IV - Marcos implemented object detection on his
own and implemented it on the Gazebo simulation.

Overall all team members contributed equally in debug-
ging and bugs that arose and implementing the code to each
task.



	PROBLEM DEFINITION
	Task I
	Task II
	Task III
	Task IV
	Contribution

